Skip to main content

Miscellaneous

We prefer low variance over high bias. Bias means overfitting and we want to train our little model to succeed in delivering Shareholder Value™ in a "fast-paced dynamic environment".

Mean-Squared Error=MSE=Variance+Bias2MSE=Var[X]+(E[X]μ)2\text{Mean-Squared Error} = MSE = \text{Variance} + \text{Bias}^2 \text{MSE} = Var[X] + (E[X] - \mu)^2

For dice rolls, E[X]=3.5E[X] = 3.5 and Var(E)=3512Var(E) = \frac{35}{12}


  • 1nk=n(n+1)2\sum_1^n{k} = \frac{n(n+1)}{2}
  • 1nk2=n(n+1)(2n+1)6\sum_1^n{k^2} = \frac{n(n+1)(2n+1)}{6}
  • k=0pk=11p\sum_{k=0}^{\infin}{p^k} = \frac{1}{1 - p}, 1p1\forall -1 \leq p \leq 1
  • ddx(f(x)g(x))=f(x)g(x)+f(x)g(x)\frac{d}{dx}(f(x)g(x)) = f(x)g'(x) + f'(x)g(x)
  • 1x=ln(x)\int{\frac{1}{x}} = ln(x)
  • 11+x2=tan1(x)\int{\frac{1}{1 + x^2}} = tan^{-1}(x)

Cox's Theorem (#)

This is a foundational result in Probability and the Philosophy of Probability. Professor Cox showed that if you want a mathematical system of reasoning or inference (use numbers) about uncertainty (absence of predictability) that behaves in a complete (takes into account all data) consistent (many ways of reasoning leading to the same answer) way, then that system is the Theory of Probability.

See this video for a nice quick explanation:

Trig Table from Middle School

θ\theta0(0)0^\circ \, (0)30(π6)30^\circ \, \left(\tfrac{\pi}{6}\right)45(π4)45^\circ \, \left(\tfrac{\pi}{4}\right)60(π3)60^\circ \, \left(\tfrac{\pi}{3}\right)90(π2)90^\circ \, \left(\tfrac{\pi}{2}\right)
sinθ\sin\theta0012\tfrac{1}{2}12\tfrac{1}{\sqrt{2}}32\tfrac{\sqrt{3}}{2}11
cosθ\cos\theta1132\tfrac{\sqrt{3}}{2}12\tfrac{1}{\sqrt{2}}12\tfrac{1}{2}00
tanθ\tan\theta0013\tfrac{1}{\sqrt{3}}113\sqrt{3}Not defined
cscθ\csc\thetaNot defined222\sqrt{2}23\tfrac{2}{\sqrt{3}}11
secθ\sec\theta1123\tfrac{2}{\sqrt{3}}2\sqrt{2}22Not defined
cotθ\cot\thetaNot defined3\sqrt{3}1113\tfrac{1}{\sqrt{3}}00